The first edition of this book provided an account of the restricted Burnside problem making extensive use of Lie ring techniques to provide a uniform treatment of the field. It also included Kostrikin’s theorem for groups of prime exponent. The second edition, as well as providing general updating, contains a new chapter on E.I. Zelmanov’s highly acclaimed and recent solution to the Restricted Burnside Problem for arbitrary prime-power exponent. This material is currently only available in papers in Russian journals. This proof of Zelmanov’s theorem given in the new edition is self contained, and (unlike Zelmanov’s original proof) does not rely on the theory of Jordan algebras.